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Abstract 
This paper investigates the use of the Direct Analysis method, established within the AISC 
Specification for Structural Steel Buildings, for steel-concrete composite beam-columns, 
including both concrete-filled steel tube and steel reinforced concrete members. In addition, the 
paper outlines recommendations for equivalent flexural rigidity to be used in elastic analyses for 
composite columns. Both the Direct Analysis recommendations and equivalent rigidity values 
were developed based on computational results from a comprehensive suite of analyses of 
benchmark frames. The validity of the elastic analysis and design approach is confirmed though 
comparisons to results of fully nonlinear analyses using distributed plasticity finite elements that 
explicitly model the key phenomena that affect system response, including member inelasticity 
(e.g., concrete cracking and steel residual stresses) and initial geometric imperfections.  
 
 
1. Introduction 
Composite frames have been shown to be an effective option for use as the primary lateral force 
resistance system of building structures; and in many cases offer significant advantages over 
other lateral force resistance systems (Hajjar 2002). However, little guidance is available 
regarding the value of flexural rigidity that should be used in elastic analyses of complete 
composite frames. In addition, no comprehensive validation has been conducted for the use of 
the Direct Analysis method (AISC 2010b) with composite structures. This paper presents work 
conducted as part of a NEES research project to build core knowledge on the behavior of 
composite beam-columns and to develop rational stability analysis and design recommendations 
for both non-seismic and seismic loading. 
 
The Direct Analysis method provides a straightforward and accurate way of addressing frame in-
plane stability considerations (White et al. 2006). In this method, required strengths are 
determined with a second-order elastic analysis where members are modeled with a reduced 
rigidity and initial imperfections are either directly modeled or represented with notional lateral 
loads. The method allows for the computation of available strength based on the unsupported 
length of the column, eliminating the need to compute an effective length factor. The validity of 
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this approach has been established through comparisons between fully nonlinear analyses and 
elastic analyses (Surovek-Maleck and White 2004a; b; Deierlein 2003; Martinez-Garcia 2002). 
However, to date, no appropriate reduced elastic rigidity values have been developed nor has the 
methodology in general been thoroughly validated for composite members. 
 
Among the challenges to validation of the Direct Analysis method for composite members is the 
lack of guidance on the value of elastic flexural rigidity (EI) that should be used for analysis of 
composite members. An estimation of the flexural rigidity is necessary for first- and second-
order static and dynamic analyses, as well as eigenvalue analyses. When used for this purpose 
the flexural rigidity is denoted as EIelastic. Such a value could be used:  1) in conjunction with 
Direct Analysis rigidity reductions to perform strength checks; 2) to compute story drifts used in 
interstory drift checks; 3) to compute fundamental periods and mode shapes (including for 
response spectrum analysis); and 4) as the elastic component of a concentrated plasticity beam-
column element. 
 
The elastic flexural rigidity is also used in the determination of the elastic critical buckling load 
when computing axial compressive strength. When used for this purpose the flexural rigidity is 
denoted as EIeff. The AISC Specification provides expressions for EIeff for steel reinforced 
concrete (SRC) columns (Eq. 1) for concrete-filled steel tube (CFT) columns (Eq. 3) based on an 
examination of experimental research (Leon et al. 2007).  
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Since concrete experiences nonlinearity a relatively low load levels, one value or expression for 
the elastic rigidity is generally insufficient. For example, EIeff should be representative of axial 
dominant behavior near incipient buckling whereas it may be more appropriate for EIelastic used 
to determine story drift to be representative of combined axial and bending behavior at lower 
load levels. This is in contrast to structural steel where EIeff = EIelastic = EsIs is widely considered 
safe and accurate for nearly all of these purposes as they relate to common design procedures. 
 
In order to address these current needs in design, a large parametric study has been conducted. 
The study focuses on two related aspects of stability design. First is the development of an 
effective elastic rigidity, EIelastic, for use in frame analyses with composite beam-columns. 
Second is the development and validation of Direct Analysis recommendations for stability 
design of composite systems.  
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2. Benchmark Frames 
The parametric study described in this work generally consists of comparisons between results 
from fully nonlinear analyses and elastic analyses on a set of benchmark frames. In order to 
ensure broad applicability of the recommendations, the benchmark frames are selected to cover a 
wide range of material and geometric properties. Similar studies for structural steel (Kanchanalai 
1977; Surovek-Maleck and White 2004a; b) have used a set of small non-redundant frames and a 
W8×31 section in both strong and weak axis. For this work, this set of frames was expanded and 
a variety of composite cross sections were selected. In the parametric study, a complete matrix is 
laid out whereby each cross section is used within each benchmark frame to provide a 
comprehensive set of results. 
 
2.1 Sections  
The cross sections chosen for investigation in this work are segregated into four groups 1) 
Circular CFT (CCFT), 2) Rectangular CFT (RCFT), 3) SRC subjected to strong axis bending, 
and 4) SRC subjected to weak axis bending. Within these groups, sections were selected to span 
practical ranges of concrete strength, steel ratio, and for the SRC sections, reinforcing ratio (only 
CFTs without longitudinal reinforcing bars are analyzed in this work). Other section properties 
(e.g., steel yield stress, aspect ratio) were taken as typical values. Steel yield strengths were 
selected as Fy = 50 ksi for W shapes, Fy = 42 ksi for round HSS shapes, Fy = 46 ksi for 
rectangular HSS shapes, and Fyr = 60 ksi for reinforcing bars. Three concrete strengths were 
selected: 4, 8, and 16 ksi.   
 
There is no prescribed upper limit of steel ratio for composite sections; however, practical 
considerations and the dimensions commonly produced steel shapes impose an upper limit of 
approximately 25% for CFT and 12% for SRC. The AISC Specification sets a lower limit of 
steel ratio for composite sections as 1%. However, maximum permitted width-to-thickness ratios 
provide a stricter limit for CFT members. For the selected steel strengths, the width-to-thickness 
limits (Eq. 5) correspond to steel ratio limits of 1.86% for CCFT and 3.16% for RCFT. For SRC 
members, the AISC Specification prescribes a minimum reinforcing ratio of 0.4% and no 
maximum. The ACI Code prescribes a maximum reinforcing ratio of 8%. 
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Noting these limitations 5 round HSS shapes were selected for the CCFT sections, 5 rectangular 
HSS shapes were selected for the RCFT sections, and outside dimensions of 28 in. × 28 in., 4 
wide-flange shapes, and 3 reinforcing configurations were selected for the SRC sections (Table 
1). Altogether, 5 (steel shapes) × 3 (concrete strengths) = 15 total sections were selected each for 
RCFTs and CCFTs and 4 (steel shapes) × 3 (reinforcing configurations) × 3 (concrete strengths) 
= 36 total sections were selected each for strong and weak axis bending of SRCs.   
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Table 1: Selected steel shapes and reinforcing configurations 
Index Steel Shape ρs 

A HSS 7.000×0.500 24.82% 
B HSS 10.000×0.500 17.70% 
C HSS 12.750×0.375 10.65% 
D HSS 16.000×0.250 5.72% 
E HSS 24.000×0.125* 1.93% 

* Not in the AISC Manual 
(a) CCFT 

 

Index Steel Shape ρs 
A HSS 6×6×1/2 27.63% 
B HSS 9×9×1/2 19.06% 
C HSS 8×8×1/4 11.13% 
D HSS 9×9×1/8 5.05% 
E HSS 14×14×1/8* 3.27% 

* Not in the AISC Manual 
(b) RCFT 

Index Steel Shape ρs 
A W14×311 11.66% 
B W14×233 8.74% 
C W12×120 4.49% 
D W8×31 1.16% 

(c) SRC (steel shapes) 

 

Index Reinforcing ρsr 
A 20 #11 3.98% 
B 12 #10 1.94% 
C 4 #8 0.40% 

(d) SRC (reinforcing configurations) 

 
2.2 Frames 
A set of 23 small non-redundant frames were described and used in previous stability studies on 
structural steel members (Kanchanalai 1977; Surovek-Maleck and White 2004a; b). The set 
includes both sidesway inhibited and sidesway uninhibited frames, a range of slenderness, end 
constraints, and leaning column loads. The set of frames was expanded and the frame parameters 
were generalized for use with composite sections in this study. The frames are shown 
schematically in Figure 1. The sidesway uninhibited frame is defined by a slenderness value, 
λoe1g, pair of end restraint parameters, Gg,top and Gg,bot, and leaning column load ratio, γ. The 
sidesway inhibited frame is defined by a slenderness value, λoe1g, and end moment ratio, β. The 
values of these parameters selected for the frames are described in Table 2, a total of 84 frames 
are selected. The “g” in the end restraint parameters and slenderness value denotes that these 
values are defined with respect to gross section properties.  
 
 

Figure 1: Schematic of the benchmark frames 
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Table 2: Benchmark frame variations 

Frame Slenderness End Restraint Leaning Column 
Load Ratio 

End Moment 
Ratio 

Number of 
Frames 

Sidesway 
Uninhibited 

4 values 
λoe1g = {0.22, 

0.45, 0.67, 0.90} 

4 value pairs 
(Table 3) 

4 values 
γ = {0, 1, 2, 3} n/a 64 

(= 4 × 4 × 4) 

Sidesway 
Inhibited 

4 values 
λoe1g = {0.45, 

0.90, 1.35, 1.90} 
n/a n/a 

5 values  
β = {–1.0, –0.5, 

0.0, 0.5, 1.0} 

20 
(= 4 × 5) 

 
Table 3: End Restraint Value Pairs 

Pair Gg,top Gg,bot 
A 0 0 
B 1 or 3* 1 or 3* 
C 0 ∞ 
D 1 or 3* ∞ 

*3 when γ = 0; 1 otherwise 
 
2.3 Second-Order Elastic Analysis of Benchmark Frames 
The second-order elastic results described in this work were obtained from the solution of the 
governing differential equation (Eq. 6) using the appropriate boundary conditions (Table 4). 
Closed form solutions were obtained for displacement and moment along the length of column 
using a computer algebra system. This approach is computationally quick and accurate for 
moderate displacements; however, axial deformations are neglected. Where necessary, the 
effective length factor, K, for the benchmark frames was computed using the same differential 
equation.  
 

 ( ) ( ) 0
elastic

Pv x v x
EI

′′′′ ′′+ =  (6) 

 
Table 4: Boundary conditions for the benchmark frames 

Boundary 
Condition Sidesway Uninhibited Sidesway Inhibited 

1 ( )0 0v =  ( )0 0v =  

2 ( ) ( )0 0elastic botEI v k vθ′′ ′− = −  ( )0elasticEI v M′′− =  

3 ( ) ( ) ( )elastic
PEI v L Pv L H v L
L
γ′′′ ′− − = +  ( ) 0v L =  

4 ( ) ( )elastic topEI v L k v Lθ′′ ′− =  ( )elasticEI v L Mβ′′− =  

 
3. Fully Nonlinear Analysis of Benchmark Frames 
In order to provide validated results against which the proposed elastic design methodologies 
may be evaluated, a fully nonlinear analysis formulation is used for both CFT and SRC beam-
columns that has been validated extensively against experiments for both monotonic and cyclic 
loading. This section outlines details of the nonlinear formulation. 
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3.1 Mixed Beam Finite Element Formulation 
A mixed beam finite element formulation for composite members has been developed and 
extensively validated against experimental results in prior research (Tort and Hajjar 2010; 
Denavit and Hajjar 2012; Denavit et al. 2011). Among the results against which the formulation 
was validated was a set of full-scale slender beam-columns subjected to complex three-
dimensional loading (axial compression plus biaxial bending moment) performed as part of this 
project (Perea 2010). The formulation is implemented in the OpenSees  framework (McKenna et 
al. 2000) and was used to perform the fully nonlinear analyses described in this work. It is a 
Total Lagrangian formulation assuming small strains and moderate rotations in the corotational 
frame and coupled with an accurate geometric transformation. With multiple elements along the 
length of a column, large displacement and rotation behavior is captured accurately. The 
constitutive relations were simplified for this study to better correspond to assumptions common 
in the development of design recommendations (e.g., neglecting steel hardening and concrete 
tension strength). Local buckling of the steel tube and other steel components was neglected in 
the fully nonlinear analyses. This simplification allows for the investigation of the full range of 
steel ratios without the complexity of modeling local buckling, and is consistent with the 
validations conducted when developing Direct Analysis for steel structures (Surovek-Maleck and 
White 2004a; b). It is thus assumed that when combined with existing local buckling provisions 
in the AISC Specification, the proposed design provisions are applicable to composite members 
with non-compact or slender sections.  
 
As in the prior work on the Direct Analysis method (Surovek-Maleck and White 2004b) wide-
flange shapes are modeled with elastic-perfectly plastic constitutive relations (Figure 2c) and the 
Lehigh residual stress pattern (Galambos and Ketter 1959) (Figure 2a). Reinforcing steel was 
assumed to have negligible residual stress and was also modeled with an elastic-perfectly plastic 
constitutive relation. Residual stresses in cold formed steel tubes vary through thickness. To 
allow a reasonable fiber discretization of the CFT sections, residual stresses are included 
implicitly in the constitutive relation. A multilinear constitutive relation (Figure 2b) was used in 
which the stiffness decreases at 75% of the yield stress and again at 87.5% of the yield stress to 
approximate the gradual transition into plasticity observed in cold-formed steel (Abdel-Rahman 
and Sivakumaran 1997). In addition, the yield stress in the corner region of the rectangular 
members is increased to account for the additional work hardening in that region (Abdel-Rahman 
and Sivakumaran 1997).   
 
The Popovics concrete model (Figure 2d) was selected because it allows for the explicit 
definition of the initial modulus, peak stress, and strain at peak stress. The modulus of elasticity 
of concrete is given by Eq. 7, this is equivalent to expression in the ACI Code for normalweight 
concrete and to the expression in the AISC Specification for wc = 148.1 lbs/ft3. For RCFTs, the 
peak stress was taken as f′c (Tort and Hajjar 2010). For CCFTs, the peak stress was increased to 
account the confinement provided by the steel tube using the model described by Denavit and 
Hajjar (2012). For SRCs, the concrete was divided into three regions: concrete cover, moderately 
confined concrete, and highly confined concrete, and the peak stress was computed for each 
region using the model described by Denavit et al. (2011). The strain at peak stress is given by 
Eq. 8 for unconfined concrete and Eq. 9 for confined concrete based on recommendations by 
Chang and Mander (1994). 
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(a) Lehigh residual stress pattern  

(b) Abdel-Rahman and Sivakumaran cold formed 
steel model  

 
(c) Elastic-perfectly plastic model 

 
(d) Popovics concrete model 

Figure 2: Steel and Concrete Constitutive Relations 
 
All frame analyses were performed with six elements along the length of the member, each with 
three integration points. Since the analyses were two-dimensional, strips were used for the fiber 
section; the nominal height of the strips was 1/30th of the section depth (e.g., for a CCFT section, 
approximately 30 steel and 30 concrete strips of near equal height were used).  
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3.2 Initial Geometric Imperfections 
Nominal geometric imperfections equal to the fabrication and erection tolerations in the AISC 
Code of Standard Practice (AISC 2010a) were modeled explicitly. An out-of-plumbness of L/500 
was included for the sidesway uninhibited frames and a half sine wave out-of-straightness with 
maximum amplitude of L/1000 was included for all frames. The pattern of the initial geometric 
imperfections was applied to induce the greatest destabilizing effect.  
 
3.3 Axial Compression-Bending Moment Interaction Diagrams     
Through a series of fully nonlinear analyses, axial compression-bending moment interaction 
diagrams for each section and frame were constructed. One analysis was performed with axial 
load only to obtain the critical axial load, then a series analyses applying a constant axial load 
and increasing lateral load were performed. For the case of zero applied axial load, a cross 
section analysis was performed in lieu of the frame analysis. In each analysis, the limit point was 
identified as when the lowest eigenvalue reached zero; in cases where this did not occur, the 
limit point was defined as when the maximum longitudinal strain within any section in the 
member reached 0.05. At the limit point, both the applied loads and internal forces were recorded 
allowing for the construction of the first-order applied load interaction diagram and the second-
order internal force interaction diagram, respectively. A sample of the results for two RCFT 
sections [RCFT-B-4 (ρs = 19.06%, f′c = 4 ksi) and RCFT-E-4 (ρs = 3.27%, f′c = 4 ksi)] and one 
frame [UA-67-g1 (sidesway uninhibited, fixed-fixed, K=1, λoeg = 0.67, leaning column load ratio 
= 1)] is shown in Figure 3. These two sections and one frame were selected primarily to illustrate 
the methodology. While the results from these sections and frame are typical and show variation 
between members with high and low steel ratios, they are not representative of the wide range of 
material and geometric properties explored in this study.  
 

Figure 3: Example Results: Fully Nonlinear Applied Load and Internal Force Interaction Diagrams 
 
4. Flexural Rigidity for Elastic Analyses 
Because inelastic response in the concrete initiates at low load levels, an appropriate flexural 
rigidity for elastic analysis should be taken as a secant value. In order to assess the elastic 
flexural rigidity, EIelastic, a parametric study was performed recording peak deformations from 
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inelastic analyses and determining the value of EIelastic that, when used in an elastic analysis, 
would result in the same peak deformations. One value of EIelastic was determined for each frame 
and section and for different pairs of applied axial load and moment.  
 
The pairs of applied axial load and moment were selected to be evenly spaced within the applied 
load interaction computed as described above. Secondary fully nonlinear analyses were 
performed to obtain the target peak deformations. The secondary fully nonlinear analyses differ 
from the fully nonlinear analyses described previously in that no initial geometric imperfections 
were included and tension strength was included in the concrete constitutive relation, since for 
this study the average behavior rather than lower bound behavior is of interest. For each load 
pair, EIelastic was determined through an iterative process such that the peak deformation from the 
elastic analysis was equal to the target peak deformation. A sample of the results for the sections 
and frame shown previously is shown in Figure 4. Each of the points represents one applied axial 
load and moment pair, the color corresponds to the value of EIelastic that was obtained as 
described above, normalized with respect to the gross flexural rigidity. 
 

Figure 4: Example Results: EIelastic 
 
Figure 4 shows that the flexural rigidity varies with load level. At low loading, the gross flexural 
rigidity is a good estimate of the elastic rigidity (EIelastic ≈ EIgross). As the load increases, the 
elastic rigidity decreases, with greater decreases for moment dominate loading and lesser 
decreases for axial dominant loading.  
 
A linear regression analysis was performed on the data obtained in this study to build a formula 
for EIelastic. The strongest variations in EIelastic and thus the most accurate formula depend on the 
loading. An example of such a formula for RCFTs based only on data at or below the 
serviceability load level (Figure 4) is given in Eqs. 10 and 11 (coefficient of determination = 
0.71). Similar, load-dependent formulas have been developed for the flexural rigidity of 
reinforced concrete members (Khuntia and Ghosh 2004). Unfortunately, when EIelastic depends 
on the loading, the elastic analysis becomes iterative, making this type of formula cumbersome 
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for design. More practical alternatives are discussed later in the context of the Direct Analysis 
method.   
 
 4 (RCFT)elastic s s c cEI E I C E I= +  (10) 
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5. Axial Strength 
In the AISC Specification, the same column curve is used to predict the nominal axial 
compressive strength for both structural steel and composite columns (Eq. 12), where the 
slenderness, λoe, is given by Eq. 13, the effective rigidity, EIeff, is given by Eq. 1 for SRCs and by 
Eq. 3 for CFTs, and the nominal zero-length compressive strength, Pno, is given by Eq. 14 for 
SRCs and by Eq. 15 for CFTs (C2 = 0.85 for RCFTs and C2 = 0.95 for CCFTs), noting that in 
this study local buckling is neglected and only CFTs without longitudinal reinforcement are 
investigated.  
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The critical axial load obtained from the fully nonlinear analyses, Pn,analysis, for each frame and 
section is compared to the design strength in Figure 5. For CFTs, the design axial strength is 
generally accurate. In the low and intermediate slenderness range (λoe<2), the axial compressive 
strength of concrete dominant sections (low values of ρs) tends to be underpredicted. However, 
the strength tends to be overpredicted for these sections in the high slenderness range (λoe>2) by 
as much as 15%. For CCFTs, the strength steel dominant sections in the intermediate slenderness 
range (0.5<λoe<2) is underpredicted by as much as 15%.  
 
For SRCs, the design axial strength is inaccurate, underpredicting the strength by a significant 
margin, especially for concrete dominant sections. Based on these results, a new expression for 
the effective rigidity of SRC columns is presented (Eqs. 16-17). An alternative  expression where 
C1 = 0.75 for all sections was found to be accurate for axially loaded columns but is not 
recommended because it performed poorly when used to compute beam-column strength due to 
the concavity of the applied load interaction diagrams as described later. A comparison between 
the critical axial load obtained from the fully nonlinear analyses and the strength computed using 
the proposed expression is shown in Figure 6.  
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(a) CCFT 

 

 
(b) RCFT 

 
(c) SRC (strong axis) 

 
(d) SRC (weak axis) 

Figure 5: Comparison of Axial Strength: AISC 2010 
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The values of EIeff computed with the proposed equation (Eq. 16) will be larger than those 
computed with the existing equation (Eq. 1), resulting in larger axial compressive strengths as 
seen in Figure 6a and b compared to Figure 5c and d. In order to verify the accuracy of this new 
formula, a comparison is made with concentrically loaded SRC columns experiments. Axial 
compressive strengths of a representative subset (Anslijn and Janss 1974; Chen et al. 1992; Han 
and Kim 1995; Han et al. 1992; Roderick and Loke 1975) of the database used in the original 
calibration of C1 (Leon et al. 2007) were computed using the proposed formulas (Eqs. 12-14 and 
16-17) and compared against the experimental axial compressive strengths in Figure 7. For this 
set of 52 columns (which fail predominantly about the weak axis), the section depths range from 
6.3 in. to 14 in., concrete strengths range from 2.9 ksi to 9.5 ksi, measured steel yield strengths 
range from 39 ksi to 73 ksi, and the length-to-depth ratios range from 3.1 to 17.8; see Leon et al. 
(2007) for the geometric, material, and boundary condition details of these experiments. The 
computed axial strength compares well for a majority of the tests, although some fall below the 
column curve. The current resistance factor and safety factors (φc = 0.75 and Ωc = 2.00) were 
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found to be suitable and somewhat conservative with the proposed formulas following the 
recommendations by Ravindra and Galambos (1978) and a reliability index of 3.0.    
 

 
(a) SRC (strong axis) 

 
(b) SRC (weak axis) 

Figure 6: Comparison of Axial Strength: Proposed  
 

Figure 7: Comparison of Experimental Axial Strength: Proposed 
 
6. Direct Analysis  
Cross section strength curves for composite members are quite convex, especially for concrete 
dominant members. Beam-column strength curves are much less convex (and often concave) due 
to the fact that material nonlinearity (primarily concrete cracking but also concrete crushing and 
steel yielding) initiates at low load levels and severely reduces flexural rigidity. This effect is 
greater for more slender columns since the second order effects are greater but also because the 
ratio of bending moment to axial load is greater, a condition which leads to greater reductions in 
effective slenderness (as seen in Section 4). For design methodologies in which the effective 
slenderness of the member is computed, it is possible for this variation to be accounted for 
directly in the shape of the design interaction diagram. For the Direct Analysis method, the 
effective slenderness is never computed, as the unsupported length of the member is used 
instead. Thus, unless the concave shape is accounted for otherwise, the strength of members with 
high effective length factors will be overestimated. Rigidity reductions that depend on both axial 
load and bending moment could potentially help account for the shape, but would be 
cumbersome in design. The proposed design methodology presented below accounts for these 
effects with modifications to the design interaction curve and is shown to be safe and accurate 
for all beam-columns with practical effective length factors (K<3). For beam-columns with large 
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effective length factors, the unconservative error can sometimes exceed 5%, particularly for 
concrete dominant sections.  
 
6.1 Calculation of Required Strength 
As prescribed in the Direct Analysis method, internal forces must be determined using a second-
order elastic analysis with reduced elastic rigidity and consideration of initial imperfections. The 
reduced rigidity, EIDA, for structural steel members is described by Eq. 18 where τb depends on 
the required axial strength, Pr (Eq. 19).  
 
 0.8DA b elasticEI EIτ=  (18) 
 

 ( )( )
1.0 for 0.5

4 1 for 0.5
r no

b
r no r no r no

P P
P P P P P P

τ
≤⎧

= ⎨ − >⎩
 (19) 

 
For simplicity in design and compatibility with the existing Direct Analysis procedure for steel 
members, it is beneficial to maintain the 0.8τb factor and have differences in rigidity between 
steel and composite members manifest only in EIelastic. There are several important 
considerations in the determination of an appropriate value of EIelasitc. Even at loading levels 
below typical service load levels (e.g., those identified in Figure 4), this rigidity must account for 
the cracking and initial damage that accrues in the member at under combined axial load and 
bending moment. Additional load-based terms (beyond τb) in the expression for EIDA (e.g., as 
seen in Eqs. 10-11 for a possible variation on EIelastic) would be cumbersome and thus load-
independent expressions roughly representative of EIelastic for members with high-moment low-
axial service loads were selected. It is also important that the ratio of EIeff to EIDA is 
approximately equal to 0.877φc for slender members in certain configurations so that the axial 
strength is not overestimated when performing the Direct Analysis method (Surovek-Maleck and 
White 2004a). A proposed expression for EIelastic for use with the Direct Analysis method is 
given by Eq. 20 for SRCs and Eq. 21 for CFTs. The factors C1 and C3 are the same as those in 
computation of EIeff and are given in Eq. 17 and 4 respectively. The validity of this expression 
for use in the Direct Analysis method is confirmed though the comparisons presented later in this 
section. It is likely that this expression is also valid for other purposes (e.g., those described in 
Section 1) but comprehensive studies have not been performed to confirm such a wide 
applicability.  
 
 10.75 (SRC)elastic s s s sr c cEI E I E I C E I= + +  (20) 
 
 30.75 (CFT)elastic s s c cEI E I C E I= +  (21) 
 
Initial imperfections can either be directly modeled (as was done in the fully nonlinear analyses) 
or represented with notional loads. For these comparisons the notional load approach was used in 
the design methodology, applying an additional lateral load of 0.2% of the vertical load in each 
analysis. 
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6.2 Calculation of Available Strength 
The commentary of the AISC Specification describes a method of determining the design 
interaction curve based on the plastic stress distribution method. Three specific points on the 
section interaction diagram are computed: Point A, the pure axial strength; Point B, the pure 
bending strength; and Point C, a point with combined loading where the moment is equal to the 
pure bending strength. The axial strength of each of these points is then reduced by a factor χ = 
Pn/Pno to obtain the beam-column interaction diagram (Figure 8a). For the Direct Analysis 
method, Pn is computed using K=1. 
 
The commentary methodology performs well for short and moderate length columns; however, it 
becomes less accurate for slender and concrete dominant columns, where the applied load 
interaction curve is noticeably concave. Proposed modifications to this methodology are 
illustrated in Figure 8b. The same section strength is used as the basis, but points C and B are 
moved inward by factors that depend on the slenderness. The factor αc (Eq. 22) ranges from 
PC/PA for stocky columns, resulting in the same axial load for point C as in the existing method, 
and 0.2 for slender columns, resulting in an interaction diagram equivalent to that for structural 
steel columns (AISC 2010b). The factor αB (Eq. 23) is not meant to represent a physical 
reduction in the flexural strength but rather it is a practical option for accounting for the low 
axial strength of slender columns under large bending loads where the rigidity is severely 
reduced due to concrete cracking.  
 

 
(a) AISC 2010 

 
(b) Proposed 

Figure 8: Computation of the Design Strength Interaction  
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1 0.2 1 for 1 2
0.8 for 2

oe

B oe oe

oe

λ
α λ λ

λ
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 (23) 

 
6.3 Evaluation of the Proposed Design Methodology 
To evaluate the validity of the proposed beam-column design methodology, interaction diagrams 
based on the proposed recommendations are constructed. Sample results for two RCFT sections 
and one frame are shown in Figure 9 along with the interaction diagrams from the fully nonlinear 
analyses (blue lines) as described in Section 3.3. The second-order internal force interaction 
diagram (green dashed lines) is constructed directly from the design equations (Figure 8b). The 
first-order applied load interaction diagram (green solid lines) is constructed by determining the 
applied loads that, when applied in a second-order elastic analysis with stiffness reduction (Eqs. 
18-21) and notional load, result in peak internal forces that lay on the internal force interaction 
diagram. The comparisons are performed at the nominal strength level and thus neither resistance 
factors nor safety factors were used in the computation of the interaction diagrams.  
 

Figure 9: Example Results: Fully Nonlinear and Design Applied Load and Internal Force Interaction Diagrams 
 
Error is computed between the fully nonlinear analysis interaction diagrams and the Direct 
Analysis interaction diagrams using a radial measure (Eq. 24), where rFN is the distance from the 
origin to the interaction diagram constructed from the fully nonlinear analyses and rdesign is the 
distance along the same line to the interaction diagram constructed from the design methodology. 
For the first-order applied load interaction diagram unconservative error is negative (e.g., when 
the green curve lies outside the blue curve in Figure 9).   
 

 FN design
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r r
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−

=  (24) 
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Using the radial error, interaction diagrams for different pairs of sections and frames can be 
compared. An example of this is shown in Figure 10 where the design applied load interaction 
diagrams for the two RCFT sections shown previously and all 84 frames are compared. The 
black line (a circle with a radius of one) represents the applied load interaction diagram from the 
fully nonlinear analyses. The colored lines were constructed by computing the error (Eq. 24) for 
a sweep of angles and for the same angles plotting points with a distance of 1 – ε from the origin. 
The colors correspond to the effective length factor of the frame. A colored line outside the black 
line represents unconservative error and 5% unconservative error is noted by the red dashed line. 
 
In Figure 10, the effect of the effective length factor on the accuracy of the design methodology 
for these particular cross sections can be seen. Frames with low effective length factors (cyan 
lines) tend to be more conservative while frames with high effective length factors (magenta 
lines) tend to be less conservative. For the more concrete dominant section (Figure 10b) the 
frames with high effective length factors are significantly (greater than 5%) unconservative. In 
the Direct Analyses, the effective length factor is never computed and thus it is difficult to 
properly account for these extreme cases without being unduly conservative in more common 
cases.  
 

Figure 10: Example Results: Normalized Fully Nonlinear and Design Applied Load Interaction Diagrams 
 
Histograms for each section type showing the relative frequency of the radial error from the first-
order applied load interaction diagrams from all sections and frames and through a sweep of 
angles are shown in Figure 11. A total of 84 (frames) × 15 (sections) = 1,260 sets of interaction 
diagrams are generated each for RCFTs and CCFTs, and 84 (frames) × 36 (sections) = 3,024 sets 
of interaction diagrams are generated each for strong and weak axis bending of SRCs. The 
vertical dashed line indicates the median error, which varies between 11% and 18% conservative 
(shown as positive in the figure) for each section type. A maximum of 5% unconservative error 
is desired (ASCE 1997). The proposed design methodology achieves this for most cases. 
Exceptions are: 

• Members with high effective length factors (e.g., an effective length factor, K, greater 
than approximately 3) 
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• Steel dominant CCFT members where the axial compressive strength, Pn, is 
overpredicted by the design equations 

• Steel dominant weak axis SRC members where the flexural strength, Mn, is overpredicted 
by the design equations 

 

 
(a) CCFT 

 

 
(b) RCFT 

 
(c) SRC (strong axis) 

 
(d) SRC (weak axis) 

Figure 11: Summary Error Statistics 
 
7. Conclusions 
This paper presents the results of a large parametric study undertaken to assess the in-plane 
stability behavior of steel-concrete composite members, evaluate current design provisions, and 
develop and validate new design recommendations.  This research has developed new elastic 
flexural rigidities for elastic analysis of composite members; new effective flexural rigidities for 
calculating the axial compressive strength of SRC members; new Direct Analysis stiffness 
reductions for composite members; and new recommendations for the construction of the 
interaction diagram for composite members. The proposed beam-column design methodology is 
safe and accurate for the vast majority of common cases of composite member behavior, 
although further research is recommended to continue to investigate the axial compressive 
strength of steel dominant CCFTs, the weak axis flexural strength of steel dominant SRCs, and 
members with very high effective length factors, so as to improve the recommendations.  
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